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A finite-difference method for solving a general class of linear and nonlinear time-dependent Fokker-Planck
equations, which is based on aK-point Stirling interpolation formula, is suggested. It has a fifth-order con-
vergence in time and a 2Kth-order convergence in space and allows one to achieve a given level of accuracy
with a slow~or even without! increase in the number of grid points. The most appealing features of the method
are perhaps that it is norm conserved, and equilibrium preserving in the sense that every equilibrium solution
of the analytic equations is also an equilibrium solution of the discretized equations. The method is applied to
a nonlinear stochastic mean-field model introduced by Kometani and Shimizu@J. Stat. Phys.13, 473 ~1983!#,
which exhibits a phase transition. The results are compared with those obtained with other methods that rely on
not too well controlled approximations. Our finite-difference scheme permits us to establish the region of
validity and the limitations of those approximations. The nonlinearity of the system is found to be an obstacle
for the application of Suzuki’s scaling ideas, which are known to be suitable for linear problems. But what is
most remarkable is that this nonlinearity allows for transient bimodality in a globally monostable case, even
though there is no ‘‘flat’’ region in the potential.@S1063-651X~96!08307-9#

PACS number~s!: 02.70.Bf, 05.40.1j, 02.50.2r

I. INTRODUCTION

The Fokker-Planck equation is the basic evolution equa-
tion for a great number of physical problems. There are,
however, very few models that can be solved exactly with
presently known mathematical techniques. This situation
gives rise to many stimulating opportunities for the develop-
ment of approximate methods to analyze such problems.
Computational approaches have grown enormously in popu-
larity within this context, yielding important insights into the
behavior of complex physical systems. Numerical methods
of different kinds have been developed to greatly help visu-
alization of stochastic dynamics. These methods are particu-
larly useful for a detailed study of interesting transient phe-
nomena, which would be difficult to approach otherwise.
Most of the Fokker-Planck equations analyzed in the litera-
ture are linear in the probability density, even though the
underlying Langevin dynamics might very well be nonlinear.
Whereas linear Fokker-Planck equations are in principle
amenable to numerical solutions, the truly nonlinear ones are
much more difficult to treat and in most nontrivial cases one
has to resort toad hocapproximations@1,2#. Several numeri-
cal techniques exist in the literature for the analysis of non-
linear problems. Widely used methods are the cumulant ex-
pansion@1,2#, path-integral techniques@3,4#, and stochastic
computer simulations@5#. Each of them has its own advan-
tages when applied to the nonlinear Fokker-Planck equation.
Specific advantages sought include having high, easily con-
trollable accuracy and a rapid convergence rate, being com-
putationally efficient in terms of speed and storage require-
ments, and being equilibrium preserving. The latter
requirement is particularly important in studying systems
that exhibit phase transitions. All the aforementioned meth-

ods, however, fail to produce exact equilibrium solutions of
the Fokker-Planck operator. Common drawbacks are their
hardly controllable accuracy and their too slow convergence,
except perhaps in cases where the distribution function is
single peaked. The difficulty arises when dealing with sys-
tems with more than one stable state, for which simulations
over very long-time lengths are usually necessary.

An alternative procedure free of these drawbacks is the
finite-difference method of Chang and Cooper@6# ~see also
its reformulations by Larsenet al. @7#!. It is based upon the
requirement that the discretized Fokker-Planck operator pos-
sesses equilibrium solutions that agree at the mesh points
with equilibrium solutions of the analytic operator. The ac-
curacy of this approach is determined by two factors: the
accuracy of the time propagation scheme and the accuracy of
the space discretization. The standard way to control its ac-
curacy is thus varying the number of time integration steps
and that of grid points. In practice, however, one would like
these numbers to be as small as possible to achieve compu-
tational economy. From this point of view none of the meth-
ods developed in@6,7# can be recognized as suitable. These
are all of first-order convergence in time and second-order
convergence in space. As a result, a rather large number of
grid points ~about 200! is usually necessary to get results
with three stable digits@7#.

The purpose of this work is twofold. First, we develop a
method that allows us to reach a given level of accuracy
without any~or with a mild! increase in the number of space
discretization points. Second, we will apply the method to
numerically study some aspects of the relaxation dynamics
of a nonlinear Fokker-Planck model. It was introduced by
Kometani and Shimizu within the context of muscle contrac-
tion @8#. The model describes the cooperative dynamics of a
large number of subunits with a mean-field interaction be-
tween them. A more complete statistical-mechanical treat-
ment of the model given later by Desai and Zwanzig@1# and
by Dawson@9# pointed out its relation with the Weiss-Ising
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model. These authors also showed that the combined effect
of thermal noise and mean-field interaction gives rise, in the
thermodynamic limit, to a truly nonlinear Fokker-Planck
equation for the probability density associated with the order
parameter. The system presents an order-disorder phase tran-
sition described by a bifurcation of its equilibrium distribu-
tion. The relaxation of the system from different initial con-
ditions was studied by Desai and Zwanzig@1#, as well as by
Brey, Casado, and Morillo@2# by numerically solving a trun-
cated cumulants hierarchy. One of the drawbacks of this
method, however, is that it does not correspond to any sys-
tematic expansion in a parameter of the system, so it is not
simple to improve its convergence. In a certain range of pa-
rameters, the cumulant expansion was found to be very
slowly convergent, and Suzuki’s scaling hypothesis@10# was
used to overcome this problem@2#; but the range of the va-
lidity of this approximate procedure has remained unclear.
So a specific goal we would like to achieve in the present
work is to test the validity of these two approaches.

The outline of the article is as follows. In Sec. II a method
is presented and tested on an exactly solvable Fokker-Planck
equation. In Sec. III we give a brief description of the model
and compare our results with those of@2#. Section IV con-
cludes with general remarks and future applications.

II. METHOD

In this section, we outline a method for numerically solv-
ing a general class of one-dimensional Fokker-Planck equa-
tions of the form

] tP~x,t !5L@x,t,P#P~x,t !

[
1

A~x!
]x@B~x,t,P!1Q~x,t,P!]x#P~x,t !, ~1!

with the boundary and initial conditions

~B1Q]x!P50 atx5xl , xr , ~2!

P~x,t50!5P~x,0!. ~3!

A generalization of the method to systems with more than
one degrees of freedom is straightforward. Note that the
Fokker-Planck operatorL, defined on the right-hand side of
Eq. ~1!, possesses quasiequilibrium solutions that are all de-
termined by

@B~x,t,P!1Q~x,t,P!]x#P50. ~4!

By quasiequilibrium we mean that solutions of
L@x,t,P#P(x,t)50 @cf. ~4!# are generally dependent oft and
therefore these are not true equilibrium solutions of~1!. They
become equilibrium solutions only ifB andQ become ex-
plicitly independent oft as t goes to infinity.

Following @7#, our primary assumption is that~1! can be
cast into the form

] tP~x,t !5
1

A~x!
]xD~x,t,P!E22~x,t,P!]xE

2~x,t,P!P~x,t !,

~5!

]xE
2P50 atx5xl , xr , ~6!

whereD(x,t,P) andE(x,t,P) are positive and sufficiently
smooth functions assumed to be known in analytical form
and where all quasiequilibrium solutions are now determined
by the algebraic equation

E2@x,t,P~x,t !#P~x,t !5g ~7!

for an appropriate set of constantsg. If the functions
D(x,t,P) and E(x,t,P) do not possess closed analytic
forms, they can be determined numerically as suitable solu-
tions of the equations

B~x,t,P!]P@E2~x,t,P!P#5Q~x,t,P!]xE
2~x,t,P!, ~8!

2D~x,t,P!]xE~x,t,P!5B~x,t,P!E~x,t,P!, ~9!

wherex andP are regarded as independent variables andt as
a parameter.

In order to integrate Eq.~5! by numerically solving a
finite-difference equation, one has to define a two-
dimensionalt2x lattice @6,7#. However, for the sake of clar-
ity, only the t variable will first be discretized, while thex
variable will be left continuous. This simplification is pos-
sible because none of the following considerations depends
on the way the space variable is discretized.

A straightforward integrating of~5! over time yields

P~ t1t!5P~ t !1
t

6
@LP~ t1t!1LP~ t !14LP~ t1t/2!#

2
t5

2880
LP~4!~j !, ~10!

where t<j<t1t and where the following notations have
been employed:

P~ t !5P~x,t !, LP~ t !5L@x,t,P~x,t !#P~x,t !,

LP~n!~ t !5] tn
n

@LP~ t !#.

Then, using a Taylor expansion ofP(t), includingt4 terms,
one gets

P~ t1t!1P~ t !52P~ t1t/2!1
t2

2
P~2!~ t1t/2!

1
t4

192
P~4!~j !, ~11!

from which it follows, in a straightforward way, that

P~ t1t/2!5
1

2
@P~ t1t!1P~ t !#1

t

8
@LP~ t !2LP~ t1t!#

1O~t4!. ~12!

Combining Eqs.~10! and ~12! provides us with an implicit
time propagation scheme of fifth-order convergence in the
time stept. These equations are nonlinear with respect to
P(t1t) and must in general be solved iteratively at each
time step. A procedure which works satisfactorily is to first
calculateP(t1t)5P(t)1tLP(t), then substitute it into the
right-hand side of~10! to obtain ~the second estimate for!
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P(t1t), and repeat this process until some convergence cri-
terion is met. In practical calculations, we have found that if
the time step is sufficiently small andD(x,t,P) and
E(x,t,P) are sufficiently smooth functions ofP, the above
procedure converges in one or two iterations.

Proceeding further, we introduce a uniformly spacedx
lattice made ofN points with coordinates

xi5xl1~ i21!h, i51, . . . ,N, h5~xr2xl !/~N21!,

whereh denotes the step size. The standard approach is then
to approximate to second order inh the first derivatives in
~5! by the difference@6,7#

~]xF ! i5
1

h
~Fi11/22Fi21/2!1O~h2!. ~13!

From the very beginning, however, it is clear that this differ-
encing is unsuitable for achieving highly accurate results.
The trick we employ is to rewrite Eq.~5! as

2] tP5
D

E
]xx
2 EP1

1

E
]xx
2 DEP2DEP]xx

2 1

E
2EP]xx

2 D

E
~14!

and then to approximate to 2Kth-order inh the second de-
rivatives in the above equation with a central difference of
the form

~]xx
2 F ! i5h22FC0Fi1(

j51

K

Cj~Fi1 j1Fi2 j !G1O~h2K!,

~15!

where Fi5F(xi). The explicit expressions for the coeffi-
cientsCi are readily determined by using Stirling’s interpo-
lation formula, which is a Gaussian central difference
2K11 term polynomial coinciding with a given function
F(x) at the 2K11 points. This yields@11#

Ci52~21! i11(
j51

K
@~ j21!! #2

~ j2 i !! ~ j1 i !!
. ~16!

It must be pointed out that the use of central differences such
as ~15! is the conventional way in finite-difference theory
@12# to represent derivatives of the given functionF(x) in
terms of its values on the grid with any desired level of
accuracy inh. In this representation, the operatorL becomes
an asymmetric (2K11)-diagonal matrix whose elements are
readily determined from~in the following, for simplicity, we
shall not notationally distinguish the analytic operatorL
from its matrix representation!

~LP! i5~2Aih
2!21(

j51

K

Cj$~Di1Di1 j !@h~N112 i2 j !

3Ei1 j Pi1 j /Ei2EiPi /Ei1 j #1~Di1Di2 j !

3@h~ i2 j !Ei2 j Pi2 j /Ei2EiPi /Ei2 j #%, ~17!

where

h~x!5H 1 if x.0

0 otherwise.

One might expect that for fixedN the discretization pro-
cedure outlined above would produce, with increasingK,
much more accurate results than obtained with~13!. We
have found, however, that the use of the matrixL defined by
~17! with N531 leads to a finite first eigenvalue of the
Fokker-Planck operator varying from 1025 to 1027 instead
of being exactly zero. One can mention at least three reasons
for the poor behavior ofL. First, the matrix defined by~17!
does not account for the boundary conditions~6!. Second,
approximating the second derivative with the central differ-
ence~15! leads to inaccurate computation of certain matrix
elements, particularly certain large elements in the upper left
and lower right corners of the matrix. Finally, the third
source of errors is attributed to the failure of the computed
matrix to exactly preserve quasiequilibrium solutions of the
analytic operator or, equivalently, to satisfy the condition

~LE2! i50 whateveri , ~18!

which is simply a statement thatEi
22 is a null vector ofL.

It is a simple matter to reduce the influence of the first two
factors by modifying the vectorPi on whichL operates. We
have found, however, that a dramatic reduction of discreti-
zation error is already achieved due to a simple procedure to
compute the diagonal elements so that quasiequilibrium so-
lutions are all preserved. Specifically, we enforce~18! by the
following modification of the diagonal ofL:

~LP! i5~2Aih
2!21(

j51

K

Cj@h~N112 i2 j !~Di1Di1 j !

3~Ei1 j Pi1 j /Ei2EiPi /Ei1 j !1h~ i2 j !~Di1Di2 j !

3~Ei2 j Pi2 j /Ei2EiPi /Ei2 j !#. ~19!

It not hard to see that this modification is equivalent to re-
placing the original functionE by the function

Ē5HE if xl<x<xr

` otherwise,

for which the boundary conditions~6! are fulfilled automati-
cally. The use of~19! has been found to lead to significantly
greater accuracy. For example, for the cases we have tested
we find that with this formulation machine accuracy in the
computation of the first eigenvalue of the Fokker-Planck op-
erator is achieved for allN andK.

Equations ~10!, ~12!, and ~19! constitute a finite-
difference scheme that reduces the original nonlinear prob-
lem to a conventional matrix-vector multiplication proce-
dure. The advantages of the scheme are its generality,
simplicity, and accuracy. It is worth noticing also its impor-
tant properties, which are as follows.

~i! It leads to a band structured matrixL with 2K11
nonzero diagonals, thus allowing us to minimize the storage
requirements and the execution time that is necessary for the
matrix-vector multiplication@cf. Eq. ~19!#.
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~ii ! It has fifth-order convergence in time and 2Kth-
order convergence in space. That is, with increasingK it is
able to yield a desired accuracy with a mild~or even without!
increase of the number of grid pointsN.

~iii ! It automatically preserves every quasiequilibrium so-
lution of the analytic equation.

~iv! Finally, an important property that is shared by the
analytic equation and the numerical method presented is that
they are both conservative. This means that multiplying Eq.
~1! by A(x) and integrating overx gives

E
xl

xr
dxA~x!P~x,t !5E

xl

xr
dxA~x!P~x,0!, ~20!

which shows that the integral over allx of the productAP is
a time-conserved quantity. Likewise, for the above numerical
method we have

(
i51

N

AiPi~ t !5(
i51

N

AiPi~0!, ~21!

which shows the corresponding conservation property of the
discretized equation. This property of the numerical scheme
is particularly important in studying nonlinear Fokker-Planck
equations whose solutions, in contrast to that of linear ones,
do not allow for the choice of an arbitrary normalization. In
other words, ifP(x,t) is a solution, an arbitrary constant
timesP is not.

We note that the present method can be used with any
kind of boundary conditions different from those given by
~6!. To this end, it is enough to modify in an appropriate way
the matrix representation~19!. We note also that a discreti-
zation scheme analogous to the one given in~15! can be used
if necessary to numerically solve Eqs.~8! and ~9!. Finally,
we would like to emphasize that the underlying ideas behind
the present method are easily implemented with any other
pseudo spectral and/or collocation methods available in the
literature. Most of them, however, lead to full matrix repre-
sentations of the operatorL, which are generally undesirable.
For instance, for the cases we have tested we find that the
accuracy obtained with a full matrix representation ofL us-
ing the sinc-collocation method is comparable with that
achieved in the present discretization with justK55. This
considerably reduces the CPU time necessary for vector-
matrix multiplication, especially ifN is sufficiently large,
thus increasing the feasibility of time-dependent calculations.

It will now be our aim to illustrate the power of the
present technique on an exactly solvable model. A bench-
mark model is

] tP~x,t !5]x@vx1u^x~ t !&1D]x#P~x,t !, ~22!

wherev, u, andD are constants, while the moment^x(t)& is
defined by

^x~ t !&5E
2`

`

dxP~x,t !x. ~23!

Notice that Eq.~22! is not an ordinary Fokker-Planck equa-
tion, as it depends on̂x(t)& which is itself a functional of
P(x,t). It is not difficult to prove that the exact solution to
~22! with the initial condition

P~x,tux0!5d~x2x0! ~24!

reads

P~x,tux0!5@2ps~ t !#21/2exp2
@x2^x~ t !&#2

2s~ t !
, ~25!

^x~ t !&5x0e
2~v1u!t, ~26!

s~ t !5
D

v
~12e22vt!. ~27!

Figure 1 shows the relative error made by truncating~19! at
K51, 2, and 3 in calculating the first two moments

«~ t !5
^x2~ t !&K2^x~ t !&K

2

^x2~ t !&2^x~ t !&2
21, ~28!

for D50.1, v51, u51, andx051, where the subscriptK
means that the moment is not the exact one but its approxi-
mation obtained by using the present numerical scheme. It
should be noted that an exponential power series expansion
of the propagator@13# has been used to approximately deter-
mineP(x,tux0) at smallt ’s. The time stept was taken to be
the same for allK ’s, t50.01. A grid of 31 points in the
interval @21.5,1.5# was found to be sufficient to propagate
the distribution function in time until equilibrium is reached.

It is seen that each successive higher order reduces the
error over a larger range oft. It is also seen that the conver-
gence of the solution at various orders of truncation of the
central difference~15! is very rapid. For all the problems we
have studied we find that quantitatively the same results are
already attained by truncating atK>5. As expected, beyond
somet.1/v the error begins to decrease whateverK, since
the present scheme provides one with the exact equilibrium
solution regardless of the order of truncation.

FIG. 1. Logarithm of the relative error log10u«(t)u @Eq. ~28!# in
the width of the propagator for a test process@Eq. ~22!# for K51, 2,
and 3.
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III. A NONLINEAR MEAN-FIELD MODEL

As a second and more challenging example, we consider a
system described by the nonlinear Fokker-Planck equation

] tP~x,t !5]x@U8~x,t !1D]x#P~x,t !

[D]xe
2U~x,t !/D]xe

U~x,t !/DP~x,t !,

U~x,t !5
x4

4
1~u21!

x2

2
2u^x~ t !&x, ~29!

where the prime denotes differentiation with respect tox. An
important feature of this model is that it shows a genuine
phase transition when the parametersD and/oru are varied
across the critical line. As follows from the analysis of the
equilibrium distribution given by

Pe~x!5R21exp2
1

D Fx44 1~u21!
x2

2
2uxexG , ~30!

whereR is the normalization factor and

xe5E
2`

`

dxPe~x!x, ~31!

for each value ofu there exists a value of the noise strength
Dc , so that forD.Dc there is only one stable equilibrium
distribution withxe50, while forD,Dc there are two stable
equilibrium solutions with ^x&e56xe , besides the zero
(^x&e50! unstable one. Thus, at the critical line, there is a
bifurcation of the equilibrium distribution function. For
D,Dc it is always single peaked, while forD.Dc the
stable equilibrium distribution has either one or two maxima
depending on whetheru is larger than or less than 1. The
values ofDc are determined from

A2Dc5uD23/2~z!/D21/2~z!, ~32!

where z5(u21)/A2Dc andDn(z) is a parabolic cylinder
function.

A few years ago, Shiino was able to prove anH theorem
for the above nonlinear Fokker-Planck equation@14#. This
means that in the long-time limit, the system always reaches
one of the equilibrium solutions. Clearly, for a givenu and
D.Dc , the equilibrium is unique regardless of the initial
condition. While forD,Dc there are two stable equilibrium
solutions and, ast goes to infinity, the system approaches
one or the other depending upon the sign of^x(0)& or, in
other words, upon the initial preparation of the system. In
this sense, one can say that the nonlinearity breaks the er-
godicity of the process.

It must be emphasized that all the above-mentioned pecu-
liarities of the considered system were also observed in our
numerical calculations, which were carried out in a wide
range of parametersu andD. We have also studied some
aspects of the dynamics of this model with different initial
conditions, which were previously analyzed by several work-
ers. The main findings are as follows.

~i! As expected, the results obtained with the finite-
difference method for the critical line are in excellent agree-
ment with those obtained from~32! ~see Fig. 2!. This is not

surprising, of course, since the method is equilibrium pre-
serving. We show these results solely in order to illustrate
the power of the present technique in yielding precise equi-
librium solutions.

~ii ! The cumulant~moment! expansion works well if the
system remains monostable for allt. In such a case, the
convergence is rapid and neglecting cumulants beyond
n>6 is found to be sufficient to get accurate results in the
entire time domain, except for a short initial period. In Fig. 3
we present the results forD50.1, u52 obtained with a
d-function initial condition~24! for x051024. An exponen-
tial power-series expansion of the propagator@13# has been
again used to approximately determineP(x,tux0) at small
times. It is seen that the cumulant expansion produces results
that are in good agreement with those of the finite-difference
method.

FIG. 2. Equilibrium phase diagram for the model~29!. Solid
line, exact results for the critical line obtained from Eq.~32!; dia-
monds, evaluation using the present method.

FIG. 3. Upper panel, plot of ^x(t)&; lower panel,
M2(t)5^x2(t)&2^x(t)&2 for the model~29! for D50.1,u52, and
x051024. Solid line, results obtained using the present method;
diamonds, results of the sixth-order cumulant approximation.
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~iii ! This is not, however, true for bistable systems (u
,1,D.Dc), as well as for globally monostable systems,
which demonstrates the transient bimodality for an initial
period, provided that this period is not too short. Following
@2#, we have studied the caseu50.5 andD50.01 with the
same initial conditionx051024. In this case, the cumulant
hierarchy was found to converge very slowly and anad hoc
approximation was proposed to improve its convergence.
The latter rests on Suzuki’s scaling idea that the Gaussian
approximation is good for the initial time domain@10#. Then
matching this Gaussian approximation with the sixth-order
cumulant approximation, one might expect that a correct de-
scription would be attained for the whole time domain@2#.
As evidenced by Fig. 4, the approximate solution thus ob-
tained works no better than the sixth-order cumulant ap-
proximation itself. Both approximations approach equilib-
rium much faster than the numerically exact results do. The
reason is that the Gaussian approximation appears to be ap-
plicable, in this case, for too short a period, while the non-
linearity remains important during the entire time domain.
The advantage of the present finite-difference method is that
it works adequately regardless of the initial condition and the
number of stable states.

~iv! The calculations performed revealed immediately the
existence of a sizable interval of time during which the prob-
ability distribution shows two peaks. This is clearly evident
from Fig. 5, which shows the time evolution of the probabil-
ity density for u50.5, D50.01, andx051024. Transient
bimodality is known to be a genuine phenomenon that can
occur in linear problems. This phenomenon is usually asso-
ciated with evolution in a potential having a flat plateau@15#.
It arises some time after the initial probability distribution
peak reaches the plateau and it disappears again once an
appropriate mass of probability distribution has left the flat

part of the potential. The striking difference of the present
phenomenon is that the double-peaked probability distribu-
tion was observed without any long region in the potential
whereU8(x,t) is very small. Figure 5 shows that for a very
long timet the system exists with a reasonable probability in
either one of two unsteady well-defined states until equilib-
rium is reached. Although the initial stage of relaxation is
governed by an almost linear Fokker-Planck equation,
^x(t)&;1024, the occurrence of transient bimodality is a
signature of the nonlinearity of the problem.

IV. SUMMARY AND OUTLOOK

In this paper, we present a simple and easily applicable
finite-difference method for numerically solving a general
class of one-dimensional Fokker-Planck equations. An ex-
tension of the method to systems with more than one degree
of freedom is straightforward. The method relies on the idea
of writing the Fokker-Planck equation in the form~14! and
on the use of a suitably modified central-difference represen-
tation of the second derivatives inx. The resulting dis-
cretized equation has two very useful properties. First, it is
norm conserved and, second, all equilibrium solutions of the
analytic equation, evaluated at the mesh points, are also equi-
librium solutions of the discretized equation. From this point
of view it is preferable to other numerical techniques avail-
able in the literature such as cumulant expansions, path-
integral methods, and stochastic simulations, none of which
is equilibrium preserving. It should be noted here that both
properties of the present scheme become particularly impor-
tant in studying truly nonlinear systems that exhibit a phase
transition. In such a case, all the above-mentioned techniques
may fail considerably. In particular, one must be cautious of

FIG. 4. Same as in Fig. 3, but forD50.01 andu50.5. The plus
sign is for the results of Ref.@2#.

FIG. 5. Distribution functionP(x,tux0) for the model~29! for
D50.01,u50.5, andx051024 at t51, 2, 10, 72, 105.5, and 113.
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the use of stochastic simulation methods because their con-
vergence, which is not so rapid by itself, becomes even
slower in the vicinity of phase-transition points due to criti-
cal slowing down. As a result, one has to generate a huge
number of trajectories to achieve an adequate level of accu-
racy, otherwise ‘‘unexpected’’ phenomena may arise. This
problem is planned to be discussed in more detail in a future
work @16#. It is worth noticing also the advantage of finite-
difference schemes to take into account the boundary condi-
tions. Although we restrict our considerations to the case of
reflecting boundary conditions, any other boundary condi-
tions do not seem to present special problems. The same,
however, is not true for path-integral methods, where special
tricks are required in order to incorporate the boundary con-
ditions into a path integral. Finally, the present method is
advantageous with respect to cumulant expansions in that it
provides very accurate results irrespective of the initial con-
dition and the number of peaks that the distribution function
shows during its evolution to equilibrium.

Yet another important advantage of the present method is
that it turns out to be an efficient and rather universal tool for
an accurate and error-controlled treatment of the nonlinear
time-dependent Fokker-Planck equation. The desired accu-
racy can be attained by increasing the number of nonzero
diagonals (2K11) and grid pointsN, as well as by reducing
the time stept. The final accuracy is limited only by the
requirements on the CPU time and the core of the computer
being used. For the problems considered in this paper, rela-
tive precisions better than 1026 are easily possible on a
workstation. We believe that the method presented here will
provide the necessary foundation for treating systematically
and conveniently a wide variety of linear and nonlinear
Fokker-Planck processes in physical, chemical, and biologi-
cal systems.

The method is illustrated by applying it to a nonlinear
mean-field model introduced by Kometani and Shimizu@8#.
Several approximation schemes have been used so far to
study the dynamics of this system in the limit of the number
particles going to infinity for which a nonlinear Fokker-

Planck equation was derived@1#. Usually these are based on
the cumulants expansion. The advantage of this approach is
that being truncated at some low order it may lead to rela-
tively simple equations. The drawback is that it is not simple
to improve the quality of the approximation thus obtained.
By means of the method proposed here we are able to test the
utility of this approximation itself, as well as of itsad hoc
correction developed in@2# by combining Suzuki’s scaling
hypothesis with the cumulant expansion method. Our results
demonstrate the validity of the cumulant expansion for es-
sentially monostable situations. It, however, fails to produce
correct results if any kind of transient and/or global bimodal-
ity occurs. It is interesting to note also that the nonlinearity
involved in the system treated here turns out to be an ob-
stacle for the application of Suzuki’s scaling ideas, which are
known to be suitable for linear problems. But what is most
remarkable is that this nonlinearity allows for the coexist-
ence of two peaks in the probability distribution during a
long-time interval, even though there is no ‘‘flat’’ region in
the potential.

Aside from the two examples that are considered in this
paper, the method can also be applied to other relevant prob-
lems. For instance, it would be worthwhile to study the dy-
namical response of the above nonlinear model driven by a
time-sinusoidal external field. In this regard, it is of particu-
lar interest to check numerically the validity of the Floquet
theory within the context of nonlinear equations. Another
problem of importance refers to the extension to nonstation-
ary processes of theH theorem that is derived by Shiino@14#
in the absence of external forcing. This is of interest consid-
ering the lack of a satisfactory analytical description for fi-
nite amplitudes driving fields. Both problems are investi-
gated numerically by the present authors and the results
obtained are planned to be presented elsewhere@16#.
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